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Abstract: We prove three results about colorings of the simplex reminiscent of Sperner's Lemma in hardness of 

approximation and fair division. First, let  kk

k,q + ii=1
V = v : v =q 

 
and   kk

k,q 1 2 k + ii=1
E = a+e ,a e ,....,a e : a : a =q-1 .     

Then for every Sperner-admissible labeling (l : Vk,q  [k] such that vl(v) > 0 for each v  Vk,q), there are at least 

q k 3

k 2

  
 

 
 non-monochromatic hyperedges in Ek,q. This implies an optimal Unique-Games hardness of (k-1-)-

approximation for the Hypergraph Labeling with Color Lists problem in a k-uniform hypergraph H = (V, E) with color 

lists L(v)  [k] v  V. To prove labeling l(v)  L(v) that minimizes the number of non-monochromatic hyperedges. 

We also show that a (k - 1)-approximation can be achieved. Second, we show that in contrast to Sperner's Lemma, 

there is a Sperner-admissible labeling of Vk,q such that every hyperedge in Ek,q contains at most 4 colors. We present an 

interpretation of this statement in the context of fair division : There is a preference function on k,q = 

 kk

+ ii=1
x  : x  = q  such that for any division of q units of a resource, (x1, x2, . . . ., xk)  k,q such that 

 
k

ii=1
x  = q-1,  at most 4 players out of k are satisfied. 
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I. INTRODUCTION 

 

We investigate hypergraph labeling problems of the 

following kind. Hypergraph Labeling with Color Lists: 

Given a hypergraph H = (V, E) with weights w(e), e  E 

and color lists L(v)  [k], v  V, find a labeling l(v)  

L(v) for each v  V that minimizes the total weight of 

non-monochromatic hyperedges. 

 

This problem (is an equivalent form with assignment 

costs, referred to as Hypergraph Labeling) was introduced 

in [1] as a generalization of Uniform Metric Labeling [5], 

to incorporate relationships between multiple elements. 

Hypergraph Labeling with Color Lists can be cast in a 

more general framework involving submodular functions, 

as follows. 

Submodular Labeling with Color Lists: Given a 

submodular function f : 2
V
  

  and color lists L(v)  

[k], v  V,  find a labeling l(v)  L(v) that minimizes 
k 1

i=1
( (i)).f l  

 

Partitioning problems of this type have been investigated 

recently in [2, 3, 6, 5]. The main result of [2] is a 2-

approximation for Submodular Multiway Partition, a 

special case of Submodular Labeling with Color Lists 

where the color lists are either singletons (“terminals”) or 

equal to [k] (unrestricted). This captures problems such as  

 

 

Hypergraph Multiway Cut and Node-weighted Multiway 

Cut (see [2]), where the color lists are similarly restricted 

to be singletons or [k]. Without this restriction, 

Submodular Labeling with Color Lists does not admit 

factors better than log n, by a simple reduction from Set 

Cover [1]. An O(k log n)-approximation for Submodular 

Labeling with Color Lists has been given in [3]. 
 

For Hypergraph Labeling, [1] gave a  -approximation 

when all hyperedges have size at most . This generalizes 

a 2-approximation for Uniform Metric Labeling [5] which 

corresponds to the  = 2 case. On the hardness side, the 

strongest negative result was a hardness of (2 - )-

approximation assuming the Unique Games Conjecture[6]. 
 

In [3], a statement somewhat reminiscent of Sperner's 

Lemma was conjectured, which would imply an integrality 

gap and also a hardness of (k – 1 - )-approximation 

under the UGC[4], for Hyper-graph Labeling with Color 

Lists on k-uniform hypergraphs with label set [k]. This 

conjecture gives a lower bound on the number of non-

monochromatic hyperedges for any feasible labeling of a 

certain hypergraph Hk,q embedded in the simplex. This 

statement was proved for k = 3 in [3]; it implies a Unique-

Games hardness of (2 - )-approximation for Hypergraph 

Labeling with Color Lists on 3-uniform hypergraphs with 

label set [2]. 
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II. MODELS 

 

Assuming the Unique Games Conjecture, there is no (k – 1 

- )-approximation for Hypergraph Labeling with Color 

Lists on k-uniform hypergraphs with label set [k]. A -

approximation algorithm, where  is the maximum size of 

a hyperedge, was known for this problem [1]; we show 

that the same algorithm also gives a (k – 1)-

approximation. Thus, we determine the optimal 

approximability of Hypergraph Labeling with Color Lists 

in terms of the label set size. 

This result motivates us to consider other coloring 

questions related to Sperner's Lemma and the conjecture 

of [3]. We prove that in contrast to Sperner's Lemma, the 

hypergraph Hk,q defined in [3] can be labeled in such a 

way that each hyperedge uses at most 4 colors. This 

implies in particular that the hardness result for 

Hypergraph Labeling with Color Lists holds even for 

hypergraphs with a feasible labeling such that each 

hyperedge uses at most 4 colors. 

We also give an interpretation of this result in the setting 

of fair division[8]. Our result shows that for a certain 

restricted variant of fair division, not only is it impossible 

to satisfy all players but in fact all players except four will 

be always unsatisfied.  
 

Further, we consider simplicial subdivisions and ask what 

fractional labelings are possible for subdivisions of the 

simplex. We show that for sufficiently fine subdivisions, 

there is a fractional (Sperner-admissible) labeling that uses 

local labeling using at most 2 colors for each hyperedge. 

In contrast, by Sperner's Lemma, for any admissible 

labeling there is a hyperedge with all k colors. This has 

consequences for the following problem. 

 

2.1. Example  

Hypergraph j-Colors-Avoiding Labeling with Color 

Lists: Given a hypergraph           H = (V, E) with color 

lists L(v)  [k]; v  V, find a labeling l(v)  L(v) for each 

v  V that minimizes the number of hyperedges 

containing at least j distinct colors. 
 

In particular, for j = k we try to avoid hyperedges 

containing all k colors; we call this problem Hypergraph 

Rainbow-Avoiding Labeling with Color Lists. Our result 

implies that a natural LP for this problem cannot  

distinguish between instances that can be labeled so that 

each hyperedge contains at most 2 colors, and instances 

where some hyperedge must contain all k colors. We 

prove that it is in fact NP-hard to decide whether there is a 

feasible labeling such that every hyperedge contains at 

most 2 colors, for k = 3.  

 

III. PRELIMINARIES 

 

A note on vector notation: We denote vectors in boldface, 

such as v  
k . The coordinates of v are written in 

italics, such as v = (v1, . . . , vk). By ei, we denote the 

canonical basis vectors (0, . . . ., 1, . . . . 0). 

3.1 The Simplex-Lattice Hypergraph and sub-divisions 

of the simplex.  

Let q  1 be an integer and consider the (k – 1)-

dimensional simplex defined by  

 
k

k

k,q 1 2 k i

i = 1

 =  x = x ,  x ,  ....,  x   : x  0, x q .
 

    
 



 

3.2 The Simplex-Lattice Hypergraph.  

We consider a vertex set of all the points in k,q with 

integer coordinates: 

 
k

k

k,q 1 2 k i

i = 1

V  =  a = a ,  a ,  ....,  a   : a  0, a q .
 

   
 


 

 

3.3 The Simplex-Lattice Hypergraph is a k-uniform 

hypergraph 

Hk,q = (Vk,q, Ek,q) whose hyperedges (which we also call 

cells due to their geometric interpretation) are indexed by 

b  
k

  such that 
k

ii = 1
b  = q-1 :  we have 

k
k

k,q i

i = 1

E  =  e(b) : b  ,  b  0, b q 1
 

    
 


 

 

where e(b) = {b + e1; b + e2; . . ., b + ek} = {(b1 + 1, b2, . . . 

., bk), (b1, b2 + 1, . . . . , bk), . . . . , (b1, b2, . . . , bk+1)}. We 

sometimes omit the indices k; q when there is no danger of 

confusion. For each vertex a  Vk,q, we have a list of 

admissible colors L(a), which is  

L(a) = {i  [k] : a1 > 0} 
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Figure 1: The Simplex Lattice Hypergraph for k = 3; q = 

7, with hyperedges shaded in gray. The gray triangles 

together with the white triangles form a simplicial 

subdivision. The lists of admissible colors are given on the 

boundary; for internal vertices the lists are all {1,2,3}. 

 

The reader may notice that this is a setup reminiscent of 

Sperner's Lemma [7]. (See Figure 1.) However, Sperner's 

Lemma concerns subdivisions of the simplex; Hk,q is not a 
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subdivision of the simplex since its hyperedges viewed as 

geometric cells do not cover the full volume of k,q. 

 

3.4 Simplicial subdivisions. A simplicial subdivision of 

k,q is a collection of simplices (“cells”)  such that  

 The union of the cells in  is the simplex k,q. 

 For any two cells 1, 2  , their intersection is either 

empty or a full face of a certain dimension shared by 

1, 2. 

We describe a concrete subdivision of k,q in Section 6. 

 

IV. COLORINGS OF SIMPLICIAL SUBDIVISIONS 

 

First, let us recall the statement of Sperner's Lemma [7]. 

We call a labeling  l : V  [k] Sperner-admissible if l(a)  

L(a) for each a  V ; i.e., if l(a) = j then aj > 0. 

 

4.1 Sperner's Lemma  
For every Sperner-admissible labeling of the vertices of a 

simplicial subdivision of k,q, there is a cell whose vertices 

receive all k colors. 

We remark that this does not say anything about the 

Simplex-Lattice Hypergraph: Even if the subdivision uses 

the point set Vk,q, the rainbow cell given by Sperner's 

Lemma might not be a member of Ek,q since Ek,q consists 

only of scaled copies of k,q without rotation; it is not a 

full subdivision of the simplex. (See Figure 2.) 
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Figure 2 : A Sperner-admissible labeling for k = 3 and q = 

7. The set E of hyperedges consists of the shaded triangles. 

The gray triangles are non-monochromatic hyperedges. At 

least one triangle (not necessarily in E) must be 3-colored 

(rainbow). Instead of rainbow cells, the statement 

proposed (and proved for k = 3) in [3] involves 

nonmonochromatic cells. 

 

4.2 Statement: Proposition (Simplex-Lattice Coloring 

Lemma)  

For any Sperner-admissible labeling l : Vk,q  [k], there  

are at least 
q k 3

k 2

  
 

 
 hyperedges e  Ek,q that are non-

monochromatic under l. 

The first-choice labeling. In particular, the proposition is 

that a Sperner-admissible labeling minimizing the number 

of non-monochromatic cells is a first-choice one which 

labels each vertex a by the smallest coordinate i such that 

ai > 0. Under this labeling, all the hyperedges e(b) such 

that b1 > 0 are labeled monochromatically by 1. The only 

hyperedges 

that receive more than 1 color are those where b1 = 0, and 

the number of such hyperedges is exactly 
q k 3

k 2

  
 

 
. 

 

Proof. Consider the set of hyperedges Ek,q : observe that it 

can be written naturally as 

 Ek,q = {e(b) : b  Vk,q-1} 

i.e., the hyperedges can be identified one-to-one with the 

vertices in Vk,q-1. Recall that             e(b) = {b + e1; b + 

e2, . . . , b + ek}. Two hyperedges e(b), e(b) share a vertex 

if and only if         b + ej = b + ei for some pair i, j  [k]; 

or in other words if b, b are nearest neighbors in          

Vk,q-1 (differ by 1 in exactly two coordinates). 

Consider a labeling l : Vk,q  [k]. For each i  [k], let Ci 

denote the set of points in Vk,q-1 representing the 

monochromatic hyperedges in color i,  

Ci = {b  Vk,q-1 : v  e(b) : l(v) = i} 

Define an injective mapping i : Ci  Vk,q-2 as follows: 

i(b) = b - ei 

The image is indeed in Vk,q-2 : if b  Ci, we have bi > 0, or 

else e(b) would contain a vertex a such that ai = 0 and 

hence e(b) could not be monochromatic in color i. 

Therefore, b - ei  
k

  and (b – ei) . 1 = q – 2 which 

means b – ei  Vk,q-2. 
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Figure 3 : The mappings i : Ci  Vk,q-2. The hyperedges 

are represented by the empty circles; Ci is the subset of 
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them monochromatic in color i. The black squares 

represent Vk,q-2 ; note that each point in Vk,q-2 is the image 

of at most one monochromatic hyperedge. 

 

Further, we claim that i[Ci]  j[Cj] =  for every i  j. If 

not, there would be b  Ci and b  Cj such that b - ei = b 

- ej. Then, the point a = b + ej = b + ei would be an 

element of 

both the hyperedge e(b) and the hyperedge e(b). This 

contradicts the assumption that e(b) is monochromatic in 

color i and e(b) is monochromatic in color j. So the sets 

i[Ci] are pairwise disjoint subsets of Vk,q-2. By the 

definition of i, we clearly have |i[Ci]| = |Ci|. We conclude 

that the total number of monochromatic hyperedges is 
k k

i i i k,q-2

i = 1 i = 1

|C |  = | [C ] |   |V |    

The total number of hyperedges is | Ek,q | = | Vk,q-1 | 

Considering that | Vk,q | = 
q k 3

k 2

  
 

 
 (the number of 

partitions of q into a sum of k nonnegative integers), we 

obtain that the number of non-monochromatic hyperedges 

is 
k

k,q i k,q-1 k,q-2

i = 1

q k 2 q k 3 q k 3
|E |  |C |   |V |  |V | = 

k 1 k 1 k 2

          
         

       


 
 

V. A LABELING OF Hk,q WITH AT MOST 4 

COLORS ON EACH HYPEREDGE 

 

We recall that Sperner's lemma states that any 

Sperneradmissible labeling of a subdivision of the simplex 

must contain a simplex with all k colors. The hypergraph 

Hk,q defined in Section 3.1 is not a subdivision since it 

covers only a subset of the large simplex. It is easy to see 

that the conclusion of Sperner's lemma does not hold for 

Hk,q - for example for k = 3, we can label a 2-dimensional 

triangulation so that exactly one triangle has 3 different 

colors, and this triangle is not in E3,q. (See Figure 2.) 

Hence, each triangle in E3,q has at most 2 colors. By an 

extension of this argument, we can label Hk,q so that each 

hyperedge in Ek,q contains at most k - 1 colors. The 

question we ask in this section is, what is the minimum l
*
 

such that there is a Sperner-admissible labeling with at 

most l
*
 colors on each hyperedge in Ek,q? We prove the 

following result. 

 

Lemma 5.1. For any k  4 and q  k
2
, there is a Sperner-

admissible labeling of                      Hk,q = (Vk,q, Ek,q) such 

that every hyperedge in Ek,q contains at most 4 colors. 

 

Proof. We define a labeling l : Vk,q  [k] as follows: 

 Given a  Vk,q, let  : [k]  [k] be a permutation 

such that a(1)   a(2)  . . . a(k) (and if a(i) = a(i+1), we 

order  so that (i) < (i+1)). 

 Define t(a) to be the maximum t  [k] such that 

1  j  t, a(j)  k - j + 1. We define the “Top 

coordinates” of a to be Top(a) = ((1), . . . , (t(a))) (an 

ordered set). 

 We define the color of a to be l(a) = (t(a)), the 

index of the “last Top coordinate”. 

First, we verify that this is a well-defined Sperner 

admissible labeling.  

Since 

k
2

i

i = 1

a  = q  k ,  we have a(1) = max ai  k and 

hence 1  t(a)  k. For each aVk,q, we have : al(a) = a(t(a)) 

 k – t(a) + 1 > 0, since t(a)  k. Therefore, l is Sperner-

admissible. 

 

VI. CONCLUSIONS 

 

We have proved several results about colorings of a 

discretization of the simplex. Our result can be viewed as 

being at the opposite end of the spectrum from Sperner's 

Lemma: Instead of the existence of a rainbow cell, we 

prove a lower bound on the number of non-

monochromatic cells. Due to the motivating Hypergraph 

Labeling problem, we consider a special hypergraph 

embedded in the simplex rather than a full subdivision. A 

natural question is whether an analogous statement holds 

for simplicial subdivisions. More generally, we might 

“interpolate” between Sperner's Lemma and our result and 

some assumption of regularity would be needed to obtain a 

general result.  
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